Chronic hypoxia augments endothelin-B receptor-mediated vasodilation in isolated perfused rat lungs.
نویسندگان
چکیده
To investigate whether chronic hypoxia affects endothelin-B (ETB) receptor-mediated pulmonary vasodilation, we compared the vasodilator responses to IRL-1620, a selective ETB-receptor agonist, in isolated perfused lungs from normoxic and chronically hypoxic adult male rats. IRL-1620 caused a dose-dependent vasodilation that was greater in the hypertensive lungs than in the normotensive lungs. In normotensive lungs, a nitric oxide (NO) synthase inhibitor, N ω-nitro-l-arginine (l-NNA; 300 μM), and an ATP-sensitive potassium (KATP)-channel inhibitor, glibenclamide (Glib; 10 μM), each reduced the vasodilator response to IRL-1620 (1 nM), but the combination ofl-NNA and Glib inhibited it more effectively than either drug alone. In contrast,l-NNA alone, but not Glib alone, completely blocked IRL-1620-induced vasodilation in hypertensive lungs. The vasodilator response to a KATP-channel opener, NIP-121 (1 μM), but not the response to sodium nitroprusside (1 μM), was enhanced in hypertensive lungs. We also found increased expression of mRNA for the ETB receptor in lung tissue after hypoxic exposure. In addition, semiquantitative immunohistochemistry demonstrated higher expression levels of ETB receptors in the endothelium of distal segments of the pulmonary artery in hypoxic than in normoxic rats. These results suggest that ETB receptor-mediated pulmonary vasodilation is augmented after chronic hypoxic exposure and that release of NO may be the sole mechanism of this vasodilation in hypertensive lungs, whereas both release of NO and activation of KATP channels are involved in normotensive lungs. We speculate that the underlying mechanism responsible for this augmentation may partly be related to upregulation of ETB receptors in the endothelium of pulmonary resistance arteries in hypertensive lungs.
منابع مشابه
Endothelium-derived reactive oxygen species and endothelin-1 attenuate NO-dependent pulmonary vasodilation following chronic hypoxia.
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملContribution of oxygen radicals to altered NO-dependent pulmonary vasodilation in acute and chronic hypoxia.
Chronic hypoxia (CH) increases pulmonary arterial endothelial nitric oxide (NO) synthase (NOS) expression and augments endothelium-derived nitric oxide (EDNO)-dependent vasodilation, whereas vasodilatory responses to exogenous NO are attenuated in CH rat lungs. We hypothesized that reactive oxygen species (ROS) inhibit NO-dependent pulmonary vasodilation following CH. To test this hypothesis, w...
متن کاملMechanism of hypoxic pulmonary vasoconstriction involves ET(A) receptor-mediated inhibition of K(ATP) channel.
There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution...
متن کاملChronic hypoxia attenuates cGMP-dependent pulmonary vasodilation.
Chronic hypoxia (CH) augments endothelium-derived nitric oxide (NO)-dependent pulmonary vasodilation; however, responses to exogenous NO are reduced following CH in female rats. We hypothesized that CH-induced attenuation of NO-dependent pulmonary vasodilation is mediated by downregulation of vascular smooth muscle (VSM) soluble guanylyl cyclase (sGC) expression and/or activity, increased cGMP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 276 2 Pt 1 شماره
صفحات -
تاریخ انتشار 1999